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INTRODUCTION

Efficient transport of bulk materials by belt conveyor
systems is an important engineering design issue, espe-
cially as conveyors become longer and power require-
ments increase. It is well known within the industry that
the parasitic energy loss of a belt conveyor, due to the
indentation of the idlers into the belt backing material
can be upwards of half the total energy required to drive
it on a horizontal flight. Other loss sources includes the
rolling resistance of the idlers, belt/roller misalignments,
material trampling, frictional and acceleration losses on
loading, etc., but energy absorbed by indentation of the
belt backing as it passes over each successive idler is the
dominant power consuming factor.

INDENTATION LOSS MODELS

Models to predict the rolling resistance of a cylinder
(idler) on a viscoelastic foundarion (backing material)
have been available for some time. As a contact problem,
it is nonlinear (contact length or indentation depth is a
dependent on the load and vice versa) in load/deforma-
tion response. Rubber backing material is generally
assumed to behave as a linear viscoelastic solid, even
though it is known that most rubber compounds retain
linearity only at very low strains. Because completely
general solutions are impossible, practical solutions
require simplifying assumptions. Those assumptions
relate naturally to two separate parts of any analytical
model:

1. The deformation model—aspects of the problem
relating to the geometry, boundary conditions and
kinematics of how the material deforms.

2. The material model—aspects of the problem relat-
ing to the material properties, or constitutive rela-
tionships, i.e., the stress/strain relationships.

For example, a simple deformation model is to assume
that the belt backing deforms like a Winkler foundation,
where the backing material behaves as a set of one-
dimensional elements through the thickness, each
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behaving independently. By this assumption, there is no
shear in the deformation model. For a simple material
model it is often assumed that the backing behaves
according to the simple 3-parameter Maxwell material,
the so-called standard linear solid (SLS)—two springs and
a dashpot in parallel.

To be specific, the early work of Jonkers [1] and
Spaans [2] are both based on modeling the belt backing
by a Winkler foundation. Four parameters—h, the
backing thickness; D, the idler diameter; and W, the carry
weigh or load per unit width of belt and the indentation
depth—characterize this deformation. The material is
characterized by the SLS model with storage and loss
moduli E' and E", and hence loss tangent tan{(8) = E"/E\,
that are assumed to be independent of the loading
frequency. The effective rolling resistance is determined
by calculation of the energy absorbed by the backing
material in the loading/unloading process during one
pass over the idler. The lost energy would presumably go
into heating of the backing material. Slightly different
assumptions about how the energy per cycle is deter-
mined leads to slightly different results, but Jonkers’ is
representative and gives an indentation resistance factor,
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It is observed that this Winker foundation/energy
absorbed per cycle approach produces an indentation
resistance factor proportional to tan(8). Thus, as might
be expected, the loss tangent tan(8) is the important
parameter in the rolling resistance factor.

As a more exact deformation model, Hunter [3] and
May, et al. [4], presume the belt backing to be a two-
dimensional viscoelastic half-plane, which, unlike and
more general than the Winkler model, allows for shear
deformation. In distinction to the Jonkers’ and Spaan’s
approach these models calculate the rolling resistance by
direct determination of the backing/idler interface stress,
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assuming frictionless contact, and the moment of that
normal stress about the idler axis. The rolling resistance
is thus determined by the moment of the interface stress
about the idler bearing. However, as based on a semi-
infinite region, the backing thickness h is not inherently
involved. The material model used by both Hunter and
May is the simple three-parameter SLS.

This latter determination of the indentation resistance
through the moment of the interface pressure is a more
direct than the energy absorption approach of Jonkers
and Spaans, since it circumvents the assumption of the
lost energy per cycle absorbed by the backing by direct
calculation of the moment of the interface stress.
However, extension of this two-dimensional deformation
model to more sophisticated materials beyond the rela-
tively simple SLS, and finite backing thickness, is consid-
erably more difficult. Full two-dimensional models with
finite backing thickness require the solution of coupled
integral equations as that of Margetson [6] or totally
computational approaches such Wheeler [7] by finite
elements or of Qiu [8] by boundary elements. The disad-
vantage of these numerical approaches is that solution
dependence on critical parameters like roll radius, carry
weight, backing thickness, etc., cannot be separated out
explicitly as in equation (1).

Lodewijks [5] took an intermediate approach by using
the Winkler foundation model! for the backing, but deter-
mined the interface pressure between the roller and
backing while using the SLS material model. This
method is readily generalized to a more realistic material
model and that has been done by Rudolphi and Reicks
[9] for the generalized Maxwell, or Weichert model with
n + 1 parameters. The form for that result may be written
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Indentatlon resistance by three methods with an SLS material model

where E; and n; are the elastic and dissipative elements of
the Weichert model and 1; = n;/E; are the characteristic
periods of each element, E, is the long term stiffness
value and R=D/2 is the idler radius. In equation (2),
F(E;, 1;) denotes a function similar to that part of equa-
tion (1) involving 3, only somewhat more complex, but
explicit form. While forms of equations (1) and (2) are
similar, we observe that equation (2) is explicit in the
Weichert parameters, while to use equation (1), the
values of E' and tan(8) would have to be calculated from
the material parameters. The relationships for that calcu-
lation is the Prony series forms of

2

N

n
E'(0) = Eg+ Y B
i=1 1+07T
” _ ! T;
E"(w) = ZE,-—'Z—Z EQ. 3
i=1 1+0 T;

The half space models of Hunter [3] and May [4] are
difficult to extend from the SLS material to the Weichert
model, but the Winkler foundation models that result in
equations (1) and (2) are relatively simple to make this
extension, hence allowing for more realistic rubber mate-
rials while requiring little more computational effort.

As an example, Figure 1 shows the indentation resis-
tance results from three different deformation models
with identical material models (SLS) for each. For the
range of belt speeds considered, it is observed that
the approach of Lodewijks provides lower values for the
indentation resistance than the energy absorption
approach of Jonkers, while the full two-dimensional
solution of Hunter provides results which lay between
the other two for lower values of belt speed. Lodewijks
[51 provides a canversion factor to scale Winlkler founda-
tion results to the more exact half space models of



APPLIED RUBBER BELT COVER LOSS PREDICTION FROM INDENTATION

-15 L i [

T T N T
O  Shifted data
WLF eqn fit

-

80 -60 -40  -20

0 20 40 60 80

Temperature [°C]

FIGURE 2 Frequency/temperature shift factor as a function of temperature

Hunter and May, which produces resistance values some-
where between the Lodewijks/Hunter curves of Figure 1.

Although the predictive models of indentation
discussed above provide some variation in results, all are
capable of providing relatively good estimates of the
indentation resistance. The more analytically sophisti-
cated models would logically provide better results, and
to be sure, the computational solutions of Wheeler [7]
and Qiu [8] would provide accurate predictions for finite
backing thicknesses. Regardless of the approach, there
are many aspects of the indentation phenomena that are
not likely to be included, such as slippage and roughness
at the interface, adhesion, etc. Similarly, the material
model is likely to introduce its own assumptions and
limitations. Thus, for this study, the method of Lodewijks
[5], extended to the Weichert material model by
Rudolphi and Reicks [9], will be used as the predictive
model of indentation resistance.

BACKING MATERIAL CHARACTERIZATION

The mechanical properties of viscoelastic materials are
typically measured by sinusoidal imposed deformations
on specimens in simple tension, shear, bending or torsion
at controlled temperatures and relatively low frequencies
to avoid inertial effects. The time/temperature corre-
spondence principle (cf. refs. [10] and [11]), which
relates time or speed effects to temperature, allows one
to extrapolate to frequencies and load rates considerably
in excess of the test frequencies. In the frequency
domain, the correspondence principle implies a shift
factor a;, which is determined from test data taken at a
range of frequencies and a range of temperatures and
then overlaying, through frequency shifts, the data at the
different temperatures to form a “master” curve for a
material. Examples of these graphs for typical backing
rubber compound are shown in Figures 2 and 3.

A phenomenological basis for ay in amorphous poly-
mers is the Williams, Landel and Ferry [12], or WLF

equation, log (ay) = Cy(T - Tp)/[Cy + (T - Ty)], where T
is the temperature, Ty is a reference temperature and C;
and C, are constants determined by fitting the WLF equa-
tion to ay as determined from the shifting to form the
master curve. Figure 2 shows the shifted data and a least
squares curve fit to the WLF equation.

The theory of linear viscoelasticity relates the stress
and strain through relaxation or compliance functions
and convolution integrals (adds up history effects). Stan-
dard characterization of the material by the Weichert
model means determination of the constants (spectrum)
E; and 1; = ny/E; of the Prony series of equations (3).
Determination of that spectruin from experimental data,
as embodied in a master curve like Figure 3, is a non-
unique process, laden with several theoretical issues, but
several methodologies (cf. Emery and Tschoegl [13])
have been developed to do this. Commercial software is
also available for this purpose and rheological testing
machines are often accompanied with data analysis soft-
ware for that purpose. This issue is not the focus of this
paper; it is presumed that the spectrum can be deter-
mined that faithfully reproduces the master curve data.
The master curve data of Figure 3 shows the G' and G"
curves as reproduced by the spectrum developed by the
author's own software—a least square, non-negative fit
process at equally spaced period values T; through the
frequency span of the data. The data represented in
Figure 3 was taken by a standard rotational shear mode
tests on thin tabs of the backing material.

A strong component of the indentation resistance, as
evidenced in equation (1), is the material loss factor
tan (8) = G'/G!, as shown in Figure 4 for the above mate-
rial. This curve is a typical shape for rubber compound
properties used for belt backings in that it exhibits a fairly
strong peak when plotted against the log of the
frequency. Also, it is apparent that the master curve fit to
the data may under or over-predict the data, due to
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errors from several possible sources, but in this case is
generally a good fit, which is important since the inden-
tation resistance depends strongly on the loss tangent.

AN INDENTATION RESISTANCE EXAMPLE

The normalized indentation resistance factor F =
f/(WhEgR®)1/3 values for the above material as determined
by both the equation of Jonkers, equation (1) and the
extended method of Lodewijks, equation (2), with the
Weichert material model is shown in Figure 5. The factor F

is graphed vs. vay, since on a logarithmic scale, the ap-
shifted values overlap for the full range of belt speeds and
temperature due to the linear time/temperature superposi-
tion principle. Also, to reveal where a specific temperature
determines values on the speed shifted scale through the
shift factor ay, shown on the right vertical axis is a plot of
log(v) vs. vay. On the logarithmic scale, these are the nearly
vertical straight lines for a given temperature, or discrete
values of ay. Thus, to determine a value of F on this graph,
at a given v and T, one starts with a specific V on the right
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log(v) axis, follows it horizontally to the intersection of a
specific temperature line of interest, then projects verti-
cally, up or down, to the intersection with the curve to
locate the F value corresponding to the given v and T. In
this way, all indentation resistance values as a function of
belt speed and temperatures are collapsed onto one curve.

As representative of a typical rubber backing material,
it may be observed from Figure 5 that the predicted value
of F, or f, at any given temperature, comes from a narrow
range of the general curve, due to the nearly vertical
log() lines. Alternately, for a given temperature, the
variation in F comes from a small band on the curve asv
varies, in this case, from nearly zero to 10 m/s. Thus F is
relatively insensitive to v except at steep parts of the
curve. We also observe the strong dependence on the loss
tangent, due to the similarities of F in Figure 5 and the
loss tangent tan(8) of Figure 4. Presumably, the determi-
nation of F by a half-space model, by analogy to the
results of Figure 1, would lie somewhere between the
two curve, especially to the left of the peak.

From Figure 5, observe that the upper curve peaks at
about v =10 m/s and -25°C. At lower temperatures and
higher belt speeds, one would drop down the resistance
curve to the right. For most applications, one would not
expect to exceed those conditions and at higher tempera-
tures, one would be operating on the curves to the left of
the peak. Within this lower range (higher temperatures
and lower speeds) there is a possible variation in F from
about 0.04 to0 0.08, or a factor of two. For efficient design
one may want to take advantage of that broad, relatively
level region of these curves to the left of the peaks, while
yet not ignoring the higher values in F at the lower
temperatures and higher belt speeds.

SIMPLIFIED CURVES OF INDENTATION
RESISTANCE FOR DESIGN

Based on the results and foregoing logic for the above
representative material, a strategy for design for indenta-
tion resistance is suggested. One could create a design

Indentation resistance as a function of belt speed and temperature

curve for F to be a simplification of Figure 5, within a
practical range of interest, in the form of a “sigmoid,”

F = by+b{1+tanh[b, + bjlog(va,)]} EQ. 4
where the four constants by...by would be chosen to fit
the normalized resistance curve in a “best” sense.
Figure 6 shows such a sigmoid fit to the Jonkers’ predic-
tion of Figure 5 for use within a temperature range of
about -20°C to +20°C, A similar curve could also be fit
to the less conservative values of equation (2).

From such a simple parameterized curve of F as in
Figure 6, the actual resistance factor f would be deter-
mined through the conversion f = Wih/EgR?)!/3F and the
parameterized frequency/temperature shift factor ay
from Figure 2.

The F-curve parameterization process as described was
performed for two other materials. Those results, fit to
the equation (2) predictions, are shown in Figure 7 with
the materials labeled (a), (b) and (c); material (a) being
that of Figure 6. These could be considered low (a),
intermediate (b) and higher (¢) resistance compounds.

In this fashion, these types of generic material charac-
teristic curves and associated parameters could then be
used in a “design selection” or handbook fashion.

STRAIN AMPLITUDE EFFECTS

The effect of strain amplitude on the dissipative effects
of rubber compounds is commonly known and strains
larger than about 1% may often exceed the linear
range (cf. Osanaiye [14]). For material (a) in the above
study, along with measurements of the storage and loss
moduli at low strain levels and a fuli range of tempera-
tures and frequencies, the moduli were also measured
at 3% strain, a frequency of 10 rad/sec and a range of
temperatures. Figure 8 shows the effects on G' and G"
in a plot of each, normalized to their respective values
at 0.01% strain, vs. % strain. The temperature depen-
dent data is scattered, so there not a strict temperature
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independence, but a polynomial is fit to both G' and G".
From the fitted curve it is clear that for strains greater
than about 1%, G' decreases dramatically and G"
increases somewhat. Of course, with this trend, tan(8)
= G"/G' varies proportionally with G" and inversely with

G'. It would be expected then, that at higher strain

levels the loss tangent tan(8) = G"/G' would increase
considerably. From Figure 8, there would be nearly a

doubling of tan(8) at the higher strain values. Similar

trends were observed in materials (b) and (c).

With an increased tan(3) at higher strain levels, the
effect on the indentation resistance can roughly be
gauged from equation (1), i.e., to first order effect,
proportional to tan(8). The geometric parameters of the
system, R and h, and the carry weight W also determined
the strain in the backing material, but to a lower order
than tan(d).

Using again the generalized method of Lodewijks with
the material properties of material (a) as exemplified in
Figures 2 through 8, strain amplitude corrections to the
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calculations required to evaluate the indentation resis-
tance factor by equation (2) were performed. Now,
however, as the strain is coupled to the parameters of the
normalizing coefficient (Wh/EqR®)Y3, i.e., W, h and R,
the whole equation is evaluated. Since the maximum
strain gy of the Winkler backing increases with W, and
decreases with h and R, to examine extreme values of f,
the following calculations were made with small values
of h = 0.006350 m = 0.25 in and R = 0.05080 m 2.0 in,
while W takes on the four increasing values of W =
[175.1; 1,751; 4,378; 8,756] N/m = {1, 10, 25, 50]ib/in.
Figures 9 and 10 shows the normalized and non-normal-
ized indentation factors resulting from the analysis.

The normalized factors are shown in Figure 9 where it
is seen that four curves nearly overly one another, except
for a small shift on the horizontal axis. The curve corre-
sponding to the smallest W lies leftmost; the others
proceed in order of increasing W to the right. The simi-
larity of these curves is a consequence of using a continu-
ously updated value of Ey of equation (2) for each
temperature and belt speed value, as required by the
strain alteration of the material moduli, and tan(®), as
the calculation proceeds. This is to say that strain modu-
lation of the material properties makes it essentially
behave as different material, and the higher strains
increase tan(d) so that it responds more slowly, making
the conract length shorter or increasing the load
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frequency, shifting the curves to the right. Evidently the
factor F(E;, ;) of equation (2) is independent of strain
amplification, other than the horizontal shift.

Figure 10 shows the un-normalized resistance factors
by multiplication by (Wh/EqR%)1/3 according to equation
(2). The figure show two curves for each increment in
the load W. The solid lines show the values as deter-
mined by equation (2} with the continuously updated Eg,.
The dashed lines show approximations to the same
curves by using the low strain, normalized F curve of
Figure 9 and a particular E; value chosen so as to
produce equal values at the peak of the corresponding
curves. Determination of that aligning E value requires
an iterative process, with strain correction, to determine
the particular value of E at the point where the F func-
tion peaks. Although this is nearly tantamount to direct
determination of f, it has the important advantage of only
requiring the one, low strain F curve of Figure 9. Further,
the process is then amenable to the simplified sigmoid
parameterization of Figure 7.

From the foregoing, we have then the ability to incor-
porate strain amplitude correction into the scheme of
creating master and simplified curve for any material as
in Figure 7. Values for the indentation factor f are then
determined through a programmed process for any
system parameters W, h and R, with the material parame-
ters of ar from the WLF equation for temperature loca-
tion, remembering that for strain amplitude adjustment,
the particular values of Eg wilt also be required (an itera-
tion, given W, h and R). Accordingly, an algorithm of
small computational requirements can provide estimates

of the indentation resistance for any material where the
spectral properties are known.

The aforementioned iterative process could be based
on the formula taken from Jonkers [1] methodology
which relates maximum strain level ey of the Winkler
foundation (strain of that element directly under the
idler), to W, h, Rand E', i.e.,

2
3

6 = [ W(n/2 +3)cos(d) } EQ. S

2E'J2Rh(1 + sin(d))

With this equation (5), for any given load and
geometric parameters, and the strain amplification
curves for the material like that of Figure 8, a small
number of iterations on gy, given an initial estimate,
determines a consistent values of E' and 3, and hence E;,
for that material and strain. By sweeping through the
temperature and belt speeds of interest, while moni-
toring for the point where tan(d) is maximum, the appro-
priate value of Eg is determined.

SUMMARY AND CONCLUSIONS

Fairly simple mechanical models of the indentation process
are capable of providing good estimates of the indentation
resistance. The basic methods based on the Winkler foun-
dation assumption are easily extended to the general
Weichert material model so realistic rubber compounds
can also be included in the analysis. Under the assumptions
of linear viscoelasticity, and the time/temperature corre-
spondence principle, experimentally measured values of
the dynamic storage and loss moduli at relatively low
temperatures and modest frequency ranges can be used to
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produce sufficiently high frequency data for simulating the
indenration process. This paper shows how simplified char-
acteristic indentation resistance factors can be developed
for typical backing rubber and proposes that characteristic
design curves be developed with an attendant algorithm
for design calculations.

Under the Winkler foundation model for the backing
material, strain amplitude effects on the material process
can be included, although dependence of the material
moduli on strain amplitude would be a violation of the
linear viscoelastic assumption. We can incorporate this
simple strain amplitude dependence into the material
design curve methodology with little additional burden
on computation.

Of course, the results of any analysis can be no more
reliable than the material properties upon which it is
based and for rubber belt backing materials, there are
other, perhaps more influential issues to be considered,
such as accuracy and reproducibility of measured mate-
rial properties, evolutionary changes of the material
properties due aging, the breaking-in transient, environ-
mental influences, etc. The issue of strain amplitude
correction is also based on assumptions that stretch the
validity of linear viscoelasticity. Nevertheless, as more
reliable material properties become available and testing
methodologies become more standardized and reproduc-
ible, then the method outlined here by development of
characreristic forms for various rubber compounds would
serve to provide designers the ability to take advantage
of lower power loss predictions.
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